

Transportation in a Supply Chain

Copyright @ 2010 Pearson Education, Inc.

13-1

Factors Affecting Transportation Decisions

- ◆ Carrier (party that moves or transports the product)
 - Vehicle-related cost.
 - Fixed operating cost
 - Trip-related cost
- ◆ **Shipper** (party that requires the movement of the product between two points in the supply chain)
 - Transportation cost
 - Inventory cost
 - Facility cost

Copyright © 2010 Pearson Education, Inc.

Transportation Modes

- **◆**Trucks
 - TL
 - LTL
- **♦**Rail
- **♦** Air
- **◆**Package Carriers
- **♦** Water
- **◆**Pipeline

Road freight transport Europe

- ◆ Semitrailer combinations, with 26 to / 85 m³ capacity on a 13,6 metre long semi-trailer, are dominant
- ◆ 73% of inland freight transport is on roads
- ◆ Average loading is 57%, overall efficiency 43%
- ◆ On national transport 61% of journeys are shorter than 50 km, on international transport 46% are longer than 500 km.
- ◆ The average share of empty journeys is between 30% 35%

Source : European Commission, Road Freight Transport Vademecum, March 2009

Copyright @ 2010 Pearson Education, Inc.

Truckload (TL)

- ◆ Average revenue per ton mile (1996) = 9.13 cents
- ◆ Average haul = 274 miles
- ◆ Average Capacity = 42,000 50,000 lb.
- ◆Low fixed and variable costs
- ◆Major Issues
 - Utilization
 - Consistent service
 - Backhauls

Copyright © 2010 Pearson Education, Inc.

13-9

Less Than Truckload (LTL)

- ◆ Average revenue per ton-mile (1996) = 25.08 cents
- ◆ Average haul = 646 miles
- Higher fixed costs (terminals) and low variable costs
- ◆Major issues:
 - Location of consolidation facilities
 - Utilization
 - Vehicle routing
 - Customer service

Copyright © 2010 Pearson Education, Inc. 13-10

Rail freight transport EU

- ◆ Best for large volumes transported over long distances
- ◆ Less costly in environmental terms than road transport
- ◆ Key issues:
 - has to share the infrastructure with passenger traffic
 - lack of interoperability
 - a culture which is still insufficiently customer-orientated

Rail

- riangle Average revenue / ton-mile (1996) = 2.5 cents
- ◆ Average haul = 720 miles
- riangle Average load = 80 tons
- ◆Key issues:
 - Scheduling to minimize delays / improve service
 - Off-track delays (at pickup and delivery end)
 - Yard operations
 - Variability of delivery times

Copyright © 2010 Pearson Education, Inc.

Source : European Commission

13-11

Copyright © 2010 Pearson Education, Inc.

13-13

Air

- ◆Key issues:
 - Location/number of hubs
 - Location of fleet bases/crew bases
 - Schedule optimization
 - Fleet assignment
 - Crew scheduling
 - Yield management

Copyright © 2010 Pearson Education, Inc.

13-14

Package Carriers

- ◆ Companies like FedEx, UPS, USPS, that carry small packages ranging from letters to shipments of about 70 kg
- **◆** Expensive
- ◆ Rapid and reliable delivery
- ◆ Small and time-sensitive shipments
- ◆ Preferred mode for e-businesses (e.g., Amazon, Dell)
- Consolidation of shipments (especially important for package carriers that use air as a primary method of transport)

Water

- ◆Limited to certain geographic areas
- ◆Ocean, inland waterway system, coastal waters
- ◆ Very large loads at very low cost
- **◆**Slowest
- ◆90% of global trade

Source: May 21, 2012 issue of Fortune

Copyright @ 2010 Pearson Education, Inc.

13-16

Intermodal Container

- ◆ Capacity is expressed in 20 ft equivalent units (TEU)
- ◆ About 17 millions containers in use worldwide

Source: Wikipedia

		20' container		40' container		45' high-cube containe	
		imperial	metric	imperial	metric	imperial	metric
external dimensions	length	20' 0"	6.096 m	40′ 0″	12.192 m	45′ 0″	13.716 r
	width	8′ 0″	2.438 m	8′ 0″	2.438 m	8′ 0″	2.438 r
	height	8′ 6″	2.591 m	8′ 6″	2.591 m	9′ 6″	2.896 r
interior dimensions	length	18′ 10 ⁵ ⁄ ₁₈ ″	5.758 m	39′ 5 ⁴⁵ ⁄ ₆₄ ″	12.032 m	44′ 4″	13.556 r
	width	7′ 8 ¹⁹ / ₃₂ ″	2.352 m	7' 8 ¹⁹ / ₃₂ "	2.352 m	7' 8 ¹⁹ / ₃₂ "	2.352 r
	height	7′ 9 ⁵⁷ / ₈₄ ″	2.385 m	7' 9 ⁵⁷ / ₆₄ "	2.385 m	8′ 9 ¹⁵ ⁄ ₁₆ ″	2.698 r
door aperture	width	7′ 8 1⁄8″	2.343 m	7″8 1⁄8″	2.343 m	7′ 8 1⁄8″	2.343 r
	height	7′ 5 ¾″	2.280 m	7" 5 %"	2.280 m	8′ 5 ⁴⁹ / ₆₄ ″	2.585 r
volume		1,169 ft ^a	33.1 m ^a	2,385 ft*	67.5 m²	3,040 ft ^a	86.1 n
maximum gross mass		66,139 lb	30,400 kg	66,139 lb	30,400 kg	66,139 lb	30,400 k
empty weight		4,850 lb	2,200 kg	8,380 lb	3,800 kg	10,580 lb	4,800 k
net load		61,289 lb	28,200 kg	57,759 lb	26,600 kg	55,559 lb	25,600 k

Copyright © 2010 Pearson Education, Inc.

13-17

Pipeline

- ◆High fixed cost
- Primarily for crude petroleum, refined petroleum products, natural gas
- Best for large and predictable demand

Copyright © 2010 Pearson Education, Inc.

Intermodal

- ◆ Use of more than one mode of transportation to move a shipment to its destination
- ◆ Most common example: rail/truck
- ◆ Also water/rail/truck or water/truck
- ◆ Grown considerably with increased use of containers
- ◆ Increased global trade has also increased use of intermodal transportation
- More convenient for shippers (one entity provides the complete service)
- ◆ Key issue involves the exchange of information to facilitate transfer between different transport modes

Copyright @ 2010 Pearson Education, Inc.

13-23

Design Options for a Transportation Network

- ◆ What are the transportation options? Which one to select? On what basis?
- ◆Direct shipping network
- ◆Direct shipping with milk runs
- ◆All shipments via central DC
- ◆Shipping via DC using milk runs
- ◆Tailored network

Trade-offs in Transportation Design

- ◆Transportation and inventory cost trade-off
 - Choice of transportation mode
 - Inventory aggregation
- ◆ Transportation cost and responsiveness trade-off

Choice of Transportation Mode

- ◆ A manager must account for inventory costs when selecting a mode of transportation
- ◆ A mode with higher transportation costs can be justified if it results in significantly lower inventories

Copyright @ 2010 Pearson Education, Inc.

13-26

Inventory Aggregation: Inventory vs. Transportation Cost

- ◆ As a result of physical aggregation
 - Inventory costs decrease
 - Inbound transportation cost decreases
 - Outbound transportation cost increases
- ◆ Inventory aggregation <u>decreases</u> supply chain costs if the product has a high value to weight ratio, high demand uncertainty, or customer orders are large
- ◆ Inventory aggregation may <u>increase</u> supply chain costs if the product has a low value to weight ratio, low demand uncertainty, or customer orders are small

Copyright © 2010 Pearson Education, Inc. 13-27

Trade-offs Between Transportation Cost and Customer Responsiveness

- ◆ Temporal aggregation is the process of combining orders across time
- ◆ Temporal aggregation reduces transportation cost because it results in larger shipments and reduces variation in shipment sizes
- However, temporal aggregation reduces customer responsiveness

Tailored Transportation

- ◆ The use of different transportation networks and modes based on customer and product characteristics
- ◆ Factors affecting tailoring:
 - Customer distance and density
 - Customer size
 - Product demand and value

Copyright © 2010 Pearson Education, Inc. 13-28 Copyright © 2010 Pearson Education, Inc. 13-29

Role of IT in Transportation

- ◆ The complexity of transportation decisions demands use of IT systems
- ◆IT software can assist in:
 - Identification of optimal routes by minimizing costs subject to delivery constraints
 - Optimal fleet utilization
 - GPS applications

UPS routing

Copyright © 2010 Pearson Education, Inc.

13-30

Risk Management in Transportation

- ◆ Three main risks to be considered in transportation are:
 - Risk that the shipment is delayed
 - Risk of disruptions
 - Risk of hazardous material
- ◆ Risk mitigation strategies:
 - Decrease the probability of disruptions
 - Alternative routings
 - In case of hazardous materials the use of modified containers, low-risk transportation models, modification of physical and chemical properties can prove to be effective

Copyright © 2010 Pearson Education, Inc. 13-33

Making Transportation Decisions in Practice

- Align transportation strategy with competitive strategy
- ◆ Consider both in-house and outsourced transportation
- Design a transportation network that can handle e-commerce
- Use technology to improve transportation performance
- ◆ Design flexibility into the transportation network

Impact of terrorism on logistics systems

- ◆ In 2011 there were 439 pirate attacks on commercial ships and 43 merchant vessels were hijacked.
- ◆ After 9/11 new security measures have profoundly impacted logistics practices on a worldwide basis.
- ◆ The Trade Act of 2002 requires submission of advanced electronic data on all shipments entering and leaving the United States.
- ◆ Through the Container Security Initiative (CSI) currently 58 ports worldwide allow U.S. Agents to screen high-risk containers.
- ◆ The U.S. is considering a 100% scanning law for all cargo entering the U.S. (currently pending).

Copyright © 2010 Pearson Education, Inc.